设为首页 - 加入收藏
广告 1000x90
您的当前位置:三五图库香港35图库大全 > 变换编码 > 正文

编码理论的信源编码

来源:未知 编辑:admin 时间:2019-05-09

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  广义的信源编码包括模数转换(即把模拟量变换成二进制的数字量)和数据压缩(即对这些数字量进行编码来降低数码率)两个方面。信源编码的主要任务是压缩数据。 它有四种基本方法:

  ①匹配编码。这种方法是根据编码对象的出现概率(概率分布),分别给予不同长短的代码,出现概率越大,所给代码长度越短。这里所谓匹配就是指代码长度与概率分布相匹配。莫尔斯码是一种匹配编码。匹配编码还常采用去相关性的方法进一步压缩数据。

  ②变换编码。这种方法是先对信号进行变换,从一种信号空间变换成另一种信号空间,然后针对变换后的信号进行编码。变换编码在话音和图像编码中有广泛的应用。常用的变换编码有预测编码和函数编码两类。预测编码是根据信号的一些已知情况来预测信号即将发生的变化。它不传送信号的采样值,而传送信号的采样值与预测值之差。预测编码用在数字电话和数字电视中。函数变换最常用的是快速傅里叶变换 (FFT)、余弦变换、沃尔什变换、哈尔变换和阿达马变换等。通过变换可得到信号的频谱特性,因而可根据频谱特点来压缩数码。

  ③矢量编码。这种方法是将可能传输的消息分类按地址存储在接收端的电子计算机数据库中,发送端只发送数据库的地址,即可查出消息的内容,从而大大压缩发送的数据。

  ④识别编码。这种方法主要用于有标准形状的文字、符号和数据的编码。但话音也可以进行识别编码。识别编码的作用不仅限于压缩数据,它在模式识别中也有广泛的应用。 信道编码的主要任务是为了区分通路和增加通信的可靠性。以区分通路为主要目的的编码常采用正交码。以增加通信可靠性为主要目的的编码常采用纠错码。正交码也具有很强的抗干扰能力。在信道编码中也采用检错码。

  信源编码器输出 位码元一组的码。它们携带着信息,称为信息元。这样的信息元通过信道编码器后,变换成 位码元一组的码字。信息元和码字是一一对应的。 接收到错误的码字后能在译码时自动纠正错误的码称为纠错码。纠错码是一种重要的抗干扰码,可增加通信的可靠性。纠错码是利用码字中有规律的冗余度,即利用冗余度使码字的码元之间产生有规律的相关性,或使码字与码字之间产生有规律的相关性。通常把信息元中的码元数与对应码字的码元数 的比值R称为编码效率,即R=/,码字的冗余度为1-R。

  常记作(,)码,其中是一个码字的码元数(即码字长),是信息码元数,-是监督码元数。在一个码字中,如果信息码元安排在前位,监督码元安排在后-位,这种码称为组织码或系统码。如果分组码中任何两个 比特的码字进行模2相加(即不进位的普通二进制加法,模2加法记号是)可得到另一个码字,这种码称为群码。任何一致监督分组码都是群码。如果一个码字经过循环以后必然是另一个码字,这种码称为循环码。循环码是群码的一个重要子集著名的BCH码是一种循环群码。能纠正突发错误的费尔码是一种分组循环码。汉明码也是一种群码。通常把两个码字之间不同码元的数目称为汉明距离。两两码字之间汉明距离的最小值称为最小汉明距离,它是汉明码检错纠错能力的重要测度汉明码要纠正E个错误,它的最小汉明距离至少必须是2E+1;要发现最多E个错误,其最小汉明距离应为E+1。

  如果特定的一致监督关系不是在一个码字中实现,而是在个码字中实现,这种码称为卷积码。卷积码可用移位寄存器来实现,这种卷积编码器的输出可看作是输入信息码元序列与编码器响应函数的卷积。能纠正突发错误的哈格伯尔格码也是一种卷积码。在平稳高斯噪声干扰的信道上采用序贯译码方法的卷积码有很好的性能,能用于卫星通信和深空通信。 为了防止窃译而进行的再编码称为保密编码。其目的是为了隐藏敏感的信息。它常采用替换或乱置或两者兼有的方法。一个密码体制通常包括两个基本部分:加(解)密算法和可以更换的控制算法的密钥。密码根据它的结构分为序列密码和分组密码两类。序列密码是算法在密钥控制下产生的一种随机序列,并逐位与明文混合而得到密文。其主要优点是不存在误码扩散,但对同步有较高的要求。它广泛用于通信系统中。分组密码是算法在密钥控制下对明文按组加密。这样产生的密文位一般与相应的明文组和密钥中的位有相互依赖性,因而能引起误码扩散。它多用于消息的确认和数字签名中。

  密码学还研究通过破译来截获密文的方法。破译方法有确定性分析法和统计性分析法两类。确定性分析法是利用一个或几个未知量来表示所期望的未知量从而破译密文。统计分析法是利用存在于明文与密文或密钥之间的统计关系破译密文。

本文链接:http://1763inn.com/bianhuanbianma/611.html

相关推荐:

网友评论:

栏目分类

现金彩票 联系QQ:24498872301 邮箱:24498872301@qq.com

Copyright © 2002-2011 DEDECMS. 现金彩票 版权所有 Power by DedeCms

Top